
www.manaraa.com

Diversity in the Software Development Process

Victoria Hilford, Michael R. Lyu�, Bojan Cukic, Anouar Jamoussi, Farokh B. Bastani
Department of Computer Science

University of Houston
Houston, TX 77204 - 3475
Email: FBastani@uh.edu

Abstract

Various methods have been proposed for building fault-
tolerant software in an effort to provide substantial improve-
ments in software reliability for critical applications, such
as flight control, air-traffic control, patient monitoring, or
power plant monitoring. The two best-known methods of
building fault-tolerant software are n-version programming
and recovery blocks. To tolerate faults, both of these tech-
niques rely on design diversity, i.e., the availability of multi-
ple implementations of a specification. Software engineers
assume that the different implementations use different de-
signs and, thereby, it is hoped, contain different faults.

Our study uses a novel method of incorporating diver-
sity in the development of one version of the software. We
term this approach the pipeline method of software develop-
ment. Its purpose is to eliminate as many software faults as
possible before the testing phase. The method was applied
to the specification of a real, automatic airplane-landing
problem. The results of the pipeline development method
are presented.

1. Introduction

The use of redundant copies of hardware, data, and pro-
grams has proven to be quite effective in the detection of
physical faults and in subsequent system recovery. How-
ever, design faults - which are introduced by human mistakes
or defective design tools - are reproduced when redundant
copies are made; such replication of faulty hardware or soft-
ware elements fails to enhance the fault tolerance of the
system with respect to design faults.

Design diversity is the approach in which the hardware
and software elements that are to be used for multiple com-
putations are not copied, but are independently designed
to meet a system’s requirements. Different designers and
design tools are employed in each effort, and commonali-
ties are systematically avoided. The obvious advantage of�Bell Labs., Lucent Technologies, Room 2A-413 600 Mountain Av-
enue, Murray Hill, NJ 07974, Email: lyu@research.bell-labs.com

design diversity is that reliable computing does not require
the complete absence of design faults. Instead, these faults
should not result in similar outcomes in a majority of the
designs.

Software faults can be introduced in all phases of the
system life cycle: specification, design, implementation,
testing, and maintenance. They can arise from defects and
omissions in initial requirements or specifications, faultyde-
sign methodology, misinterpretations of the specifications,
and defective maintenance. Faults in the initial requirements
and specification are of extreme concern since they are a
major source of similar faults that can cause fault-tolerant
architectures to fail. Design diversity’s primary goal is to
minimize the probability that independently designed ver-
sions will contain similar faults that may cause all or most
of the versions to fail simultaneously.

Researchers have investigated two primary design-
diversity techniques, both of which tolerate the faults re-
maining in highly reliable systems: recovery-block soft-
ware and n-version programming. In the recovery-block
approach [11], alternate software versions are organized
similarly to dynamic redundancy (standby sparing) in hard-
ware. The approach’s objective is to detect design faults at
runtime by a test (called an acceptance test) performed on
the results of execution of one version and to implement the
recovery by rollback (restoring the previous, correct state)
followed by execution of an alternate version [11].

The goal of n-version programming [1] is to adapt the
hardware technique of n-fold modular redundancy with ma-
jority voting to the tolerance of design faults in software.N -version programming provides runtime fault tolerance
by comparing the outputs produced by several diverse ver-
sions and tries to mask version failures by propagating only
consensus results. This consensus is much more than the
result of simple majority voting.

In the initial n-version research, the primary dimension
of diversitywas the use of independent programmers. In fur-
ther work, the generation of diverse program versions has
relied on diversity in the specification, design, implementa-

www.manaraa.com

tion, and testing phases in the form of different development
teams, specifications, languages, algorithms, tools, and test-
ing techniques. Therefore, “n-version programming” refers
to the process by which these diverse program versions,
called n-version software, are generated [3].

The diverse versions developed for either the recovery-
block or the n-version programming approach provide ad-
ditional benefits beyond their use in tolerating design faults.
While the rigorous application of testing and other fault-
prevention techniques is essential to the development of
highly reliable systems, most testing methods simply as-
sume that failures will be observed - that an oracle exists
to determine the correct response to a test case. In fact,
determining the correct output is often a stumbling block to
extensive and more exhaustive testing. Critics have pointed
out that this technique could fail to detect failures if all ver-
sions produce similar incorrect results. However, it has also
been concluded that this technique is a good approximation
to a perfect oracle (an oracle that always makes the correct
choice) [4].

Diversity seems to be a valuable approach with benefi-
cial results in creating ultra-reliable software. Besides the
recovery-block and n-version techniques, we can think of
other ways of using diversity. One approach is possibly
using several teams during all the phases of the develop-
ment process. Then the results are compared at the end of
each team’s completion process. We call this approach the
comparison approach. Another approach is using diversity
only during some phases of the development process, such
as only during the design phase. For example if four dif-
ferent designs are produced, they can be compared two at a
time to create two intermediate versions which can then be
compared to obtain the final version. We call this approach
the consensus design approach. Another possible approach
is a pipeline approach in which different teams work on dif-
ferent phases of the development process in creating a final
program. This is the approach we wanted to study in the
context of an automatic airplane-landing application. We
call this approach the pipeline development paradigm.

Section 2 of this paper is dedicated to diversity in software
development such as n-version programming, recovery-
blocks, comparison, consensus, and pipeline. In Section
3, we discuss an experiment carried out in order to evaluate
the feasibility of the pipeline approach. Section 4 presents
the results of our experiment. Then, in Section 5, we look
back at the lessons learned and Section 6 concludes the
paper.

2. Diversity in software development

Traditionally, software creation has been perceived as a
form of art. Design and programming styles, structure and
clarity have not yet emerged intoengineering standards. Ac-

cording to Littlewood [7], “this lack of scientific support for
the efficacy of our practices is one of the main reasons why
software engineering remains an aspiration rather than an
actual description of how we engineer software systems.”
Software development for safety-critical applications is def-
initely not a form of artistic expression. One of the ways to
improve the trust in software is to improve the trust in (and
thorough understanding of) its design and construction.

The first step in this process is the identification of the
possible types of faults through an analysis of different soft-
ware development processes. As mentioned earlier, we
study the following controlled approaches to software di-
versity:� Recovery blocks (RB),� N -version programming (NVP),� Comparison approach,� Consensus design approach, and� Pipeline development paradigm.

Two most general types of faults resulting from any devel-
opment process are independent faults and related faults.
Related faults result either from a fault in the common spec-
ification, or from dependencies in the separate designs and
implementations. Related faults may be further subdivided
according to their origin, i.e., 1) among several variants (al-
ternates for RB or versions for NVP) and 2) among one or
several variants and the decider (the acceptance test of the
RB or voting algorithm of NVP). Related faults manifest
themselves under the form of similar errors, whereas we
shall assume that independent faults cause distinct errors.

2.1. Recovery blocks

PRIMARY
ALTERNATE

SECONDARY
ALTERNATE

COMMON
SPECIFICATION
OF THE ALTERNATES

 SPECIFICATION
OF THE ACCEPTANCE
 TEST

SPECIFICATION
OF THE BLOCK

a
b

c

1

2

4 5 6

3

ACCEPTANCE
 TEST

Path where fault(s)
is (are) created or

dependency channel(s)

1 -> 2 or (a)

1 -> 3, (c) or 1 -> 2 ->3

 (b)

2 -> 4 or 2 -> 5

3 -> 6

Fault type(s)

Related fault in P and S

Related fault in P and AT (or P, S, and AT)

Related fault in S and AT

Independent fault in AT

Independent fault in P or S

(a) Fault sources in the development process

(b) Fault types

Figure 1. Recovery Block (RB) fault analysis

The development process of the recovery block approach,
consisting of a primary alternate P, a secondary alternate S,

www.manaraa.com

and an acceptance test AT, is shown in Figure 1(a). During
the diversified design and implementation of P, S, and AT,
independent faults may be created. However, due to depen-
dencies, some related faults between P and S or between P,
S, and AT may also be introduced. Faults committed due to
the common specification (paths 1!2, 1!3, 1!2!3) are
likely to be related faults and, as such, the cause of similar
errors. Faults created during the implementation can also
lead to related faults between P, S, and AT (channels a, b,
c); all these faults are summarized in Figure 1(b).

2.2. N -version programming

As mentioned earlier, n-version programming (NVP) de-
scribes the practice of independently developing versions of
software that feed their outputs to a voting unit. Assum-
ing that the goal is fault tolerance, the voting unit takes
the majority result. The potential sources of faults in the
development process of n-version programming with three
versions and one adjudicator are shown in Figure 2(a).

SPECIFICATION 1

2 3COMMON
SPECIFICATION

 SPECIFICATION

OF THE NVP

OF THE VERSIONS
OF THE DECIDER

DECIDER 7V # 1 V # 2 V # 34 5 6

a b

d
c

Path where fault(s)
is (are) created or

dependency channel(s)
Fault type(s)

1 -> 2

(a), (b), or (c)

1 -> 2 -> 3, 1 -> 3 or (d)

2 -> 4, 2 -> 5, or 2 -> 6

3 -> 7

Related fault in the 3 versions

Related fault in versions and decider

Independent fault in a version

Independent fault in the decider

Related fault in 2 versions

(a) Fault sources in the development process

(b) Fault types

Figure 2. NVP fault analysis

The source of the related faults in the NVP approach is the
use of a common specification. This has been pointed out
in the much publicized study which challenges the version
independence of NVP [6], and is reflected in Figure 2(b).
However, n-version programming can be used to introduce
independence in multiple fault classes including [2, 5]:� Design faults, using different designs for each ver-

sion,� Compiler faults, using different compilers for each
version,� Language complexity faults, using different language
for each version,� Implementation faults, using different programmers.

2.3. Comparison approach

Figure 3 depicts the development process of the compar-
ison approach. 3 teams of one or more members each will
develop the software product in parallel. Up to this point, the
comparison approach resembles the n-version programming
approach. Each team goes through all the phases (design,
coding, testing, etc.). At the end of this process the results
are compared.

Comparison results guide the productionof only one final
version of the software product. Having the insight over
all kinds of independent faults discovered by comparing
different versions should be very valuable for producing a
highly reliable final version. However, it is doubtful whether
the advantages of this approach justifies its high cost. In
addition to the development of n product versions, putting
together the final version may introduce prohibitively large
costs and schedule overruns.

....
....

Team 1 Team 2 Team 3

Development
Phases

COMPARISON

FINAL VERSION

Figure 3. Comparison approach in software
development

2.4. Consensus approach

The consensus approach tries to tackle the problems of the
comparison approach. It reduces the number of concurrent
software development processes by frequent comparisons
between them. Figure 4 depicts the consensus approach
that is applied only in the design phase of the development
process. Versions V1 and V2 are compared resulting in
version V12, versions V3 and V4 are compared resulting in
the version V34, then versions V12 and V34 are compared
resulting in the final version V1234.

In addition to improved cost effectiveness, the consensus
approach may be easier to implement. Software versions
developed through the comparison approach may differ so
significantly in terms of design and implementation, that
compiling “the best" among all of them might be an elu-
sive goal. Frequent comparisons in the consensus approach
would smooth these differences throughout the stages of the
pre-release life-cycle, while at the same time diversity is
preserved wherever desired.

www.manaraa.com

Team 1 Team 2 Team 3 Team 4

V1 V2 V3 V4

V12 V34

V1234

DESIGN
PHASE

FINAL DESIGN VERSION

Figure 4. Consensus Design approach in soft-
ware development

2.5. Pipeline approach

The pipeline approach makes the further trade-off be-
tween the high cost and the level of diversity. The complex-
ity of software development suggests that all members of
the team should concentrate on producing a single reliable
version of the software.

Figure 5 depicts the development process of the pipeline
approach. It is the actual configuration that was used in eval-
uating this approach using the automatic airplane-landing
application. During the design and coding phase, one team
of 3 programmers was used. Each of the programmers was
assigned different parts of the specification with clearly de-
fined interfaces. During the code review phase, 3 review
teams, each consisting of 2 persons, were used. The final
program was submitted for acceptance testing and the de-
bugging was done by one person (who was also a member
of one of the review teams).

It is obvious that the pipeline approach focuses on effi-
cient in-process reviews. In our experiment, reviews were
used at the level of code inspections, but it is easy to envi-
sion the pipeline approach including software plans review,
software requirements review, software design review, crit-
ical design review, code inspection and software test plan
review.

3. The experiment set-up

In order to perform the steps of our pipeline paradigm,
we selected the revised specification of a real, automatic
airplane-landing problem. The development of a suit-
able specification began in 1987 and was used in the Six-
Language Project UCLA/H6LP[2]. The automatic airplane-
landing specification was finalized in 1991 [8].

Design & Coding Phases

Code Review Phase

All other development Phases

Team 1

Team 2

Team 3

Team 4

Team 5

Figure 5. Pipeline approach in software devel-
opment

3.1. Objective

Our objective was to find out what happens when there are
diverse teams working on different phases of the develop-
ment process according to the described pipeline paradigm.
The airplane-landing specification was chosen because it
enabled comparing the pipeline development method and
its suitability for safety-critical applications with previously
published experiences obtained throughn-version program-
ming. Based on the gained experience and comparison with
the related project, we would like to become aware of draw-
backs of the pipeline approach and make recommendations
for conducting future experiments.

3.2. Application description

We describe briefly the automatic airplane-landing prob-
lem. Simulated flights begin with the initialization of the
system in the Altitude Hold mode, at a point approximately
10 miles from the airport. Initial altitude is about 1500 feet,
initial speed 120 knots (200 feet/second). The Complemen-
tary Filters preprocess the raw data from the aircraft sen-
sors. Pitch-mode entry and exit is determined by the Mode
Logic equations, which use the filtered airplane-sensor data
to switch the controllingequations at the correct point in the
trajectory.

Pitch modes entered by the autopilot/airplane combina-
tion during the landing process are: Altitude Hold, Glide
Slope Capture, Glide Slope Track, Flare, and Touchdown.
The Control Law is responsible for maintaining the refer-
ence altitude. As soon as the edge of a glide slope beam
is reached, the airplane enters the Glide-Slope Capture and
Track mode and begins a pitching motion (i.e., the aircraft’s
vertical motion) to acquire and hold the beam center. Con-
trolled by the Glide Slope Capture and Track Control Law,

www.manaraa.com

the airplane maintains a constant speed along the glide slope
beam. Flare logic equations determine the precise altitude
(about 50 feet) at which the Flare Mode is entered. In re-
sponse to the Flare Control Law, the vehicle is forced along
a path which targets a vertical speed of 2 feet/second at
touchdown.

Besides computing the flight control command accord-
ing to the above sequence, each program checks its final
result (the pitch control command) against the results of
other programs. Any disagreement is indicated by the Com-
mand Monitor output, so that a supervisory program can
take an appropriate action. In Figure 6, the data flow of the
“autopilot" is summarized.

ALTITUDE

HOLD

GLIDE/SLOPE

CAPTURE&TRACK

FLARE

COMMAND

MONITOR

DISPLAY

MODE

LOGIC

BAROMETRIC

ALTITUDE

FILTER

RADIO

ALTITUDE

FILTER

SLOPE

GLIDE

FILTER

COMPLEM.

COMPLEM.

COMPLEM.
 (output values from all

 complementary filters)

Figure 6. Submodules of the Lane Command
Computation and Data Flow

4. Experimental application of pipeline devel-
opment methodology

Before presenting the results of our experiment, we would
like to introduce a similar project that used the design diver-
sity paradigm. This is done for two reasons. The first one
is that our program was subjected to the same test data as
the other project. The second reason is that we can compare
the number of faults found in our program during the devel-
opment phases with the number of faults found in the other
project.

4.1. Results from the related NVP experiment

In 1993, another project using the NVP approach [9] also
applied the automatic airplane-landing specification [8]. It
involved one faculty member and 40 students from the Uni-
versity of Iowa as well as researchers from Rockwell Inter-
national. Guided by a refined NVS (N -Version Software)
paradigm, the students were grouped into 15 independent

programming teams to design, program, test, and evaluate
the pitch control of the autopilot problem. The experiment
was done in order to see what happens when many teams
work independently to build NVS using the same specifica-
tion.

The software development cycle was conducted in sev-
eral software engineering phases, including the Initial De-
sign, Detailed Design, Coding, Code Review, Unit Testing,
Integration Testing, Acceptance Testing, and Operational
Phase. Software testing was a major activity. In the Unit
Testing (UT) Phase, each team received sample test data sets
for each module (see Figure 6) to check its basic function-
ality. A total of 133 data files (roughly equivalent to one
execution of the completely integrated program) was pro-
vided in this phase. In the Integration Testing (IT) Phase,
four sets of partial flight-simulation test data, representing
960 complete program executions, were provided to each
programming team. This phase of testing was intended to
guarantee the software’s suitability for a flight simulation
environment in an integrated system.

Finally, in the Acceptance Testing (AT) Phase, program-
mers formally submitted their programs for an acceptance
test. In the acceptance test, each program was run in a test
harness of flight simulation profiles for both nominal and
difficult flight conditions. When a program failed a test, it
was returned to the programmers for debugging and resub-
mission, along with the input case on which it failed.

More than 21,000 different program executions were im-
posed on these programs before final acceptance. Twelve
of the 15 programs passed the acceptance test and went to
the Operational Testing(OT) Phase for further evaluations.
Program size ranged from 900 to 4,000 uncommented lines
of code, with an average of 1,550 lines.

4.2. Pipeline development process

In the pipeline process, the system described in Subsec-
tion 3.2 was divided between 3 programmers. The Comple-
mentary Filters and the Mode Logic were assigned to one
programmer, the Control Laws were assigned to the second
programmer, and the Command Monitor and Display to a
third programmer. Each programmer was in charge of the
design and implementation of these modules.

After each programmer finished coding, 3 independent
teams performed the code review in a pipeline fashion,
meaning that each team went through several iterations be-
fore passing the modified code to the next team.

In our experiment, each of the three programmers per-
formed the Initial Design, Detailed Design, and Coding on
the parts assigned to them. No Unit Testing or Integration
Testing phases were carried out. Instead, the 3 review teams,
in a pipeline fashion, did a code walkthrough in several it-
erations. Review team one went over the program twice

www.manaraa.com

before passing it to review team two. Review team two per-
formed 3 iterations before passing the code to review team
three. Review team three went over the program once. After
each iteration, the code was changed and the changes were
reviewed for correctness.

Unfortunately, correctness reviews performed by the re-
view teams appear to have been carried out without proper
attention. Somehow, after the review by team one, the veri-
fication of the changes was not made, and many of the same
faults were found during the first iterationof team two. Also,
it turns out that some of the changes done during the last
iteration of team two introduced an additional fault that was
caught during the review by team three. Also, the changes
during the second iteration of team two were not checked,
so a fault was introduced that was caught only later during
the Acceptance Testing phase.

4.3. Fault classification

The following is a classification of the faults found during
the development phases. These can be broadly described as
being either implementation related or specification related.
Implementation related faults are:

1. Typographical: a mistake made in typing the program,
without violating language syntax.

2. Error of omission: a piece of required code was miss-
ing.

3. Incorrect algorithm: a deficient implementation of
an algorithm; it includes miscomputation, logic fault,
initialization fault, and boundary fault.

Specification related faults are:
1. Specification misinterpretation.
2. Specification ambiguity: an unclear or inadequate

specification which led to a deficient implementation.

4.4. Faults detected in code inspections

As far as the faults found during each iteration of the
review teams, none was of the specification related types and
quite a few were of incorrect algorithm type. The remaining
faults were mainly comment and type inconsistency errors.
Listed below are the faults, their type, and the total number
of faults found during the code review performed by the
three teams. One comment about this table is the further
classification of the Incorrect Algorithm faults. When the
declared type of a variable was “double" and the variable
was initialized to “0", that was counted as one fault. Also,
in the same category are incorrect type declarations, such as
“double" instead of “int".

4.5. Faults detected in acceptance phase

After the code review by the three teams was completed,
the program was submitted for Acceptance Testing (AT)

Fault Type Number of Faults
1. Typo 7
2. Omission 1
3a. Incorrect Algorithm 6
3b. Incorrect Algorithm(type) 6
4. Spec. Misinterpretation 0
5. Spec. Ambiguity 0

Total 20

Table 1. Number of Faults in Each Type

Phase. Let us refer to this original submission as version 1
of the program. The program contained 2140 uncommented
lines of code. During the Acceptance Testing phase, the
program was subjected to 8 test data sets. The first 4 data
sets, data1 through data4, were each 12 seconds long. The
last 4 data sets were complete flight simulations of the fol-
lowing length: DATA1 was 264.10 seconds, DATA2 was
264.35 seconds, DATA3 was 264.35 seconds, and DATA4
was 264.35 seconds. When the program failed a test data, it
was returned for debugging and resubmission,along with the
input case on which it failed. Only one programmer worked
on debugging and resubmission of the program. This pro-
grammer was not one of the three programmers that wrote
the original program.

The time at which the program failed is in increments of
the frame length, which in this case was set to 0.05 seconds.

The first time the program failed was on test data data1 at
time 0.05. It was determined after debugging that the mod-
ule in which it failed was the Glide Slope Complementary
Filter (refer to Figure 6). And the cause of failure was the
way an integrator (I8 referring to the specification [8]) was
initialized. This would qualify the fault as being of type 3,
incorrect algorithm, (initialization fault, see the classifica-
tion above). Rereading the specification, we thought that
we fixed the initialization, so with that change, the program
was resubmitted as version 2.

The second time the program failed was again on test
data data1 at time 0.05. It was determined after debugging
that the program failed in the same manner as the previous
submission. So, we determined that perhaps we had not un-
derstood the specification. After consultations, we decided
that the specification was ambiguous as far as it concerned
the initialization of Integrator I8. We then reclassified the
fault as being of type 5, specification ambiguity, fixed the
code and resubmitted the program as version 3.

The third time the program failed was on test data data1 at
time 0.10. It was determined after debugging that a variable
that needed to keep an initialized value was erroneously
declared local to the Altitude Hold Control Law (refer to
Figure 6). This fault was classified as of type 3, incorrect
algorithm. After fixing the program, it was submitted as

www.manaraa.com

version 4.
The fourth time the program failed was on test data data2

(it passed on test data data1) at time 4.50. After debugging, it
was determined that the cause of the fault was reversal of the
order of the arguments in the mode logic (refer to Figure 6).
This fault was classified as type 3, incorrect algorithm and,
analyzing corrections made during code inspections, it was
determined that it was introduced during the code review of
the second team. It is not that the team review suggested
this incorrect change, but it was the way the programmer
carried out the suggested change. Another fault was also
discovered in the Glide Slope Capture and Track Control
Law. The variable that was used in determining when the
switch SW3 was to be closed was implemented as type real
instead of type integer (to count to the 11th frame instead
of 0.5 seconds of 0.05 seconds per frame).Due to the wrong
variable type, the test was missed. This fault was classified
as type 4, specification misinterpretation. After the code
was modified, the program was submitted as version 5.

The fifth time the program failed on test data data2 at
time 6.45. After debugging, two faults were found, both of
which were classified as type 3, incorrect algorithm. The
first fault was discovered in the the Altitude Hold Control
Law where a variable was supposed to be declared as global
(rather than local) to record past values. The second fault
was discovered in the Glide Slope and Track Control Law
where the initialization was done twice, once when entering
Glide Mode and the second time when entering Track Mode.
After fixing the code, the program was submitted as version
6.

The sixth time the program failed was on test data DATA4
at time 4.20 (it passed data1, data2, data3, data4, DATA1,
DATA2, and DATA3 test data files). After debugging, it was
determined that in dealing with the Control Laws the spec-
ification was ambiguous. This type of fault was classified
as type 5, specification ambiguity. After clarifying the in-
tended meaning of the specification, the code was modified
and submitted as version 7.

The seventh version of the program then passed all the
test data files: data1, data2, data3, data4, DATA1, DATA2,
DATA3, and DATA4. Then the program was subjected to
Operational Testing Phase (OT) where the program was
tested for 2500 landing simulations, which represented
5200X2500=13M program executions. No further faults
were detected.

4.6. Discussion

Listed above are the faults, their type, and the total num-
ber of faults detected during acceptance testing.

According to Table 2, faults of type 3, Incorrect Algo-
rithm, are the most frequent.

Also, the number of faults found in each of the system

Fault Type Number of Faults
1. Typo 0
2. Omission 0
3. Incorrect Algorithm 4
4. Spec. Misinterpretation 1
5. Spec. Ambiguity 2

Total 7

Table 2. Number of faults in each type during
acceptance testing

functions is shown in Table 3. Please also refer to the
automatic airplane-landing specification [8]. According to

System Function Number
of Faults

Main controls the sequence of computations 0
BACF (Barometric Alt. Compl. Filter) 0
RACF (Radio Alt. Compl. Filter) 0
GSCF (Glide Slope Compl. Filter) 1
Mode Logic 1
Altitude Hold outer loop 1
Glide/Slope Capture & Track outer loop 1
Flare outer loop 0
All 3 Control Laws inner loop 3
Command Monitor 0
Display 0

Total 7

Table 3. Fault distribution per system function

the data in Table 3, representing fault distributions in system
functions, most faults reside in the Inner Loop function,
which can be considered a tough spot for this project. Other
tough spots occurred in GSCF, Mode Logic, AH Outer and
GS Outer.

A very interesting comparison can be made between the
number of faults found using our methodology versus the
number of faults found in the 1993 12-version project During
the life cycle of that project, 96 faults were discovered. One
version had a minimum of 5 faults and two versions had a
maximum of 10 faults. The average number of faults was 8.
Again faults of type 3, Incorrect Algorithm, were dominant.

Comparing the number of faults remaining in our version
of the automatic airplane-landing program during the Accep-
tance Testing with the average of the 12 version experiment,
it is not possible to conclude that the pipeline approach
results in significantly better software. Nevertheless, it is
beneficial to eliminate as many faults as possible through
reviews and inspections since debugging during the testing

www.manaraa.com

phase is extremely time-consuming and laborious for com-
plex process-control programs (see the following section).
Also, all implementation (“incorrect algorithm”) faults were
detected by the first 4 data sets which together totaled just
48 seconds of execution time. No further implementation
faults were detected in spite of 13M program executions.
This implies that the size of the faults that escaped the mul-
tiple independent review process were relatively large and
easily detectable by testing.

5. Lessons learned

We have presented a methodology to model and ana-
lyze some important trade-offs in the development of fault-
tolerant software. This methodology is applied to one ver-
sion of an n-version software process. Its main contribution
is in the pipeline manner in which the design, coding, and
code review phases are carried out. We observed that many
faults were eliminated during code reviews, thus reducing
the testing time. Eliminating as many faults as possible
will create a more reliable product. Since each member of
the 3 code review teams got to follow the code based on
the specification, the problem of misinterpreting the speci-
fication was diminished; this diversity of opinions on how
to interpret the specification helped minimize this type of
faults.

Once the program was submitted to Acceptance Testing
(AT) Phase, it was submitted to nominal and difficult flight
conditions. When the program failed, it was returned to
us for debugging and resubmission, along with the input
case on which it failed. Also, the failure occurred if any
of the intermediate or output variables deviated from those
of the “gold version" beyond the threshold. This made
the debugging process very tedious. One has the inputs
and the expected outputs up to the time frame when the
program failed. Debugging has to be done over many frames
verifying during each frame that the expected outputs and
intermediate variables match. Looking back at the cause of
some of the faults, it appears that these faults could have
been easily discovered during a code review. We conclude
then that it is harder to locate faults (i.e., to debug) during
testing than during code review.

Applying disciplined practices in modern software en-
gineering techniques during the software development is a
must in creating ultra-reliable software. The role of observ-
ing that all the steps of the development are followed should
be assigned to a person or a group that is not involved in any
of the development phases. This authority would enforce
that each program version be verified to comply with all
the changes suggested during the code review. The lack of
such a supervisory function is in our mind the most critical
mistake we made during this project. We left the correc-
tion of detected faults and its verification at the developer’s

discretion. Some of the suggested changes made during the
code review were not done or were done incorrectly. If the
verification would have been done, some faults could have
been avoided.

6. Summary

We have looked at improving a version of an n-version
software environment. The method’s intention is to remove
as many faults as possible before any kind of testing is
done. We are basing our method on the assumption that
it is easier and less time consuming to uncover faults dur-
ing this phase than during the testing phase. Considering
the lessons learned during the initial experiment, we believe
that pipeline approach to incorporate diversity in software
development is a viable complement to existing approaches.
More experiments are needed to obtain further data for quan-
titative assessment of this methodology.

References

[1] A. Avizienis and L. Chen, “On the implementation of n-
version programming for software fault-tolerance during ex-
ecution,” Proc. Comp. Software and Appl. Conf., 1977, pp.
149-155.

[2] A. Avizienis, M.R. Lyu, and W. Schutz, “In search of effec-
tive diversity: A six-language study of fault-tolerant flight
control software,” Dig. Papers FTCS-18, 1988, pp. 15-22.

[3] A. Avizienis, “The methodology ofn-version programming,”
In Software Fault Tolerance, (M.R. Lyu, ed.), John Wiley,
1995, pp. 23-46.

[4] S.S. Brilliant and J. Knight, “On the performance of software
testing using multiple versions,” Dig. Papers FTCS-20 1990,
pp. 408-415.

[5] E. Collins, L. Dalton, P. Perry, G. Polloc, C. Sicking, “A
review of research and methods for producing high conse-
quence software,’ Proc. 1995 IEEE Aerospace Appl. Conf.,
Vol. 1, Aspen, CO, 1995, pp. 197-245.

[6] J. C. Knight, N. G. Leveson, “An experimental evaluation
of the assumption of independence in multiversion program-
ming,” IEEE Trans. Soft. Eng., Vol SE-12, No. 1, Jan 1986,
pp. 96-109.

[7] B. Littlewood, “Learning to live with uncertainty on our soft-
ware,” Proc. 2nd Intl. Software Metrics Symp., London, UK,
Oct. 1994.

[8] M.R. Lyu, “Software requirements document for a fault-
tolerant flight control computer,” U. of Iowa ECE55:195
Project Specification, 1991, 64 pages.

[9] M.R. Lyu and Y.-T. He, “Improving the n-version program-
ming process through the evolution of a design paradigm,”
IEEE Trans. on Reliability 1993, pp. 179-189.

[10] M.R. Lyu, J.R. Horgan, and S. London, “A coverage analysis
tool for the effectiveness of software testing,” IEEE Trans.
on Reliability, 1994, pp. 527-535.

[11] B. Randell and J. Xu, “The evolution of the recovery block
concept,” In Software Fault Tolerance, (M.R. Lyu, Ed.), John
Wiley, 1995, pp. 1-21.

